Subtitles section Play video Print subtitles Zeitgeist Day 2013 - 'Thinking in Systems' - Jason Lord [Applause] My name is Jason Lord. I coordinate chapters (which are just awareness activism groups in the state of California) of which we have 15 right now; and there are eight Z-Day events going on in California this weekend. So, to continue this emerging train of thought, my presentation today is on the topic of 'Thinking in Systems, a Worldview for a Natural Law-Based Economy.' I find there are two angles when communicating these ideas: one is the dominant value program of the culture, where the goal of our awareness activism is to essentially update the cultural mindset and hence the culture's values; the other angle is understanding the actual structure of social operation, in regards to the model that we express and how it works. By now, you've heard much on the topic of social values, which also include your personal value set, which is the lens through which you see and interpret the world around you. My hope today is that you'll take with you an alternate lens with which to view the world: this lens being the foundation for the very attainable and currently doable social system the Movement advocates. The goal here is to put systems into context when discussing a Natural Law/ Resource-Based Economy. I'm going to shorten that down to Natural Law model. I've divided this presentation into four parts, and they're short parts: 'Defining Systems in Language', 'Seeing How Systems Have Behavior' (now that will be interesting), 'A Quick Look at Three Broad Economic Components and What Life Need Means' and 'Governance', the sticky topic. Part one: 'Defining Systems' The topics I want to cover pose a challenge on two levels: language and relationships. I'm using old language, which is our everyday language, in order to express non-linear relationships. It's easy to understand linear relationships with old language, since two elements can be drawn on a graph, showing the simple relationship with constant proportions; whereas, nonlinear relationships do not produce a proportional effect and can only be drawn in curves and wiggles. The world is full of non-linear relationships, which can surprise our linear-thinking minds. Where we may have learned that a small push produces a small response, it would follow in linear thinking that a larger push, twice as big, would produce twice as big a response. But in a non-linear system, twice as big a push could produce a fraction of the response, a response magnitudes larger, or no response at all. So, with that in mind, for the next four hours we will look at hundreds of graphs, lots of mathematical formula and enough of that crap. A system is not just a collection of random things; it is an interconnected set of elements that is coherently organized in a way that achieves something, consisting of component parts, interconnections, function or purpose. For now, it will suffice to see systems as a set of components, interconnected in such a way that their relationship is greater than the sum of the parts. Central to understanding systems, especially in understanding symbiotic relationships, is the concept of feedback. Complex systems have feedback loops that allow for self-renewal and self-organization, such as when you heal from a cut or recover from being sick or observe the self-organizing complexity of insects and plants or the cycle of bird migrations around the planet. Feedback is a loop where information of some kind is fed back into the system itself, whether it's data in a computer, consensus from a population or a change in the temperature, it is the way a system responds to its environment. So systems-thinking is the process of understanding how component parts relate to each other within the whole. Now, in nature, systems-thinking examples include ecosystems in which various elements such as air, water, plants, animals, interact to achieve equilibrium with the environment, hence achieving stasis within the Earth system itself. Systems are not just physical, they can also be comprised of beliefs and political ideologies or modes of social organization, such as monetary structures, systems within systems, both physical and intellectual, all interacting with each other, all at the same time. By taking this view, we can study the behavior of systems to know if the outcomes are desired or harmful, which brings us to Part two: 'Systems Behavior' Let's take a look at an example. Here's something I think most of you are familiar with: that wonderful toy that we call a Slinky. Yes, the Slinky holds the understanding to a complex and elegant system we call a Natural Law/Resource-Based Economy. If you hold the Slinky in the palm of your hand, nothing happens. If you hold the slinky by one end, it starts to bounce up and down; this is a great example of systems behavior. And whether you move the Slinky from one hand to the other, or throw it back at your friend in frustration, the question to pose is this "What made the Slinky bounce up and down, or walk down steps?" Or said another way "What causes the resulting behavior?" Now, some of you may be figuring out answers like "The person's hands did" or "Gravity". Whereas those answers may seem logical on the surface, the answer is actually much more simple. The answer lies within the system that we call a Slinky itself; the hands that manipulate it suppress or release some behavior that is latent within the structure of the spring. This is a central insight into systems theory and understanding our world through this system's lens. Now, we tend not to see in this way; instead, we focus on the resulting behavior, such as crime, as the problem itself: fighting crime, fighting the whole list of causes, (we can go down the list for quite a while), rather than understanding such outcomes as latent behavior inherent in system structure. When it comes to Slinkys, system behavior is easy enough to understand, but when it comes to economics, class, nations or other established systems, it's not so simple. But once we see that there is relationship between structure and behavior, we can begin to understand how systems work, how some work well and how others do not work well at all, manifesting latent behaviors inherent to those systems, each producing different outcomes in the social landscape. So, let's look at some parts of our current social structure, using the lens of systems-thinking. Some things that come to light when taking on this worldview are: political leaders do not cause recessions or economic booms; ups and downs are inherent in the structure of the market-economy itself. Competitors rarely cause a company to lose market share; the losing company creates its losses through its own business policies, while the competitor is there to scoop up the advantage. Oil-exporting nations are not solely responsible for oil-price increases; price spikes and economic chaos are results from oil-importing nations building economies that are vulnerable to supply interruptions. The flu virus does not attack you; rather, you set up the conditions for it to flourish within you. And as a final example, criminal behavior: locking people up who are deemed criminal only swells prison populations; it does not address what is causing the behavior in the first place. Statements like these can seem unsettling, for they start to shift the focus from the resulting behavior to the system structure itself, and you're going to come up against this when you talk about the Movement to people. Now, there are many ways to see the world. So much of what we think about along the lines uses language that only lives in the abstract, without having a referent back to the physical life system, whereas our ability to observe, test, collect feedback and try again has brought us out of the dark ages to where we are today. And this is why The Zeitgeist Movement is interested in the scientific method, as applied to our sustainability as a species. When you look through the lens of a systems worldview, the method of science is not restricted in its application to the physical world; it can also be applied to our social systems, to our economics, to our educational system, and as a method of understanding human behavior. And in turn, there is a natural feedback system built into the physical reality which allows this method to adjust, adapt and change as needed, and this is what we mean by emergent. Now, I want to distinguish between the scientific method and the science industry. Some people have trust issues with science, and when you look into what people don't trust, it's not really science, as in the scientific method they don't trust, but rather the existing science industry. Our science industry has certainly been corrupted through the mechanism of profit incentive, where a corporation might need to force results that enhance the selling of their product. In a 2012 publication from the UCS entitled 'Heads They Win, Tails We Lose', it outlines how corporations corrupt science through the use of financial pressure, through downplaying evidence and exaggerating uncertainty,