Subtitles section Play video Print subtitles Before I dive into the mechanics of how cells divide I think it could be useful to talk a little bit about a lot of the vocabulary that surrounds DNA There's a lot of words and some of them kind of sound like each other but they can be very confusing So the first few I'd like to talk about is just about how DNA either generates more DNA,makes copies of itself or how it essentially makes proteins and we've talked about this in the DNA video So let's say I have a little-- I'm just going to draw a small section of DNA I have an A, a G,a T,let's say I have two T's and then I have two C's Just some small section It keeps going And, of course, it's a double helix It has its corresponding bases Let me do that in this color So A corresponds to T, G with C, it forms hydrogen bonds with C, T with A, T with A, C with G, C with G And then, of course, it just keeps going on in that direction So there's a couple of different processes that this DNA has to do One is when you're just dealing with your body cells and you need to make more versions of your skin cells your DNA has to copy itself, and this process is called replication You're replicating the DNA So let me do replication So how can this DNA copy itself? And this is one of the beautiful things about how DNA is structured Replication So I'm doing a gross oversimplification but the idea is these two strands separate and it doesn't happen on its own It's facilitated by a bunch of proteins and enzymes but I'll talk about the details of the microbiology in a future video So these guys separate from each other Let me put it up here They separate from each other Let me take the other guy Too big That guy looks something like that They separate from each other and then once they've separated from each other,what could happen? Let me delete some of that stuff over here Delete that stuff right there So you have this double helix They were all connected They're base pairs Now, they separate from each other Now once they separate, what can each of these do? They can now become the template for each other If this guy is sitting by himself, now all of a sudden a thymine base might come and join right here so these nucleotides will start lining up So you'll have a thymine and a cytosine, and then an adenine adenine, guanine, guanine, and it'll keep happening And then on this other part this other green strand that was formerly attached to this blue strand the same thing will happen You have an adenine, a guanine, thymine, thymine, cytosine, cytosine So what just happened? By separating and then just attracting their complementary bases we just duplicated this molecule, right? We'll do the microbiology of it in the future but this is just to get the idea This is how the DNA makes copies of itself And especially when we talk about mitosis and meiosis I might say, oh, this is the stage where the replication has occurred Now, the other thing that you'll hear a lot and I talked about this in the DNA video, is transcription In the DNA video, I didn't focus much on how does DNA duplicate itself but one of the beautiful things about this double helix design is it really is that easy to duplicate itself You just split the two strips, the two helices and then they essentially become a template for the other one and then you have a duplicate Now, transcription is what needs to occur for this DNA eventually to turn into proteins but transcription is the intermediate step It's the step where you go from DNA to mRNA And then that mRNA leaves the nucleus of the cell and goes out to the ribosomes, and I'll talk about that in a second So we can do the same thing So this guy, once again during transcription will also split apart So that was one split there and then the other split is right there And actually, maybe it makes more sense just to do one-half of it so let me delete that Let's say that we're just going to transcribe the green side right here Let me erase all this stuff right-- nope, wrong color Let me erase this stuff right here Now, what happens is instead of having deoxyribonucleic acid nucleotides pair up with this DNA strand you have ribonucleic acid, or RNA pair up with this And I'll do RNA in magneta So the RNA will pair up with it And so thymine on the DNA side will pair up with adenine Guanine, now, when we talk about RNA, instead of thymine we have uracil, uracil, cytosine, cytosine, and it just keeps going This is mRNA Now, this separates That mRNA separates, and it leaves the nucleus It leaves the nucleus, and then you have translation That is going from the mRNA to-- you remember in the DNA video I had the little tRNA The transfer RNA were kind of the trucks that drove up the amino acids to the mRNA and this all occurs inside these parts of the cell called the ribosome But the translation is essentially going from the mRNA to the proteins and we saw how that happened You have this guy-- let me make a copy here Let me actually copy the whole thing This guy separates, leaves the nucleus and then you had those little tRNA trucks that essentially drive up So maybe I have some tRNA Let's see, adenine, adenine, guanine, and guanine This is tRNA That's a codon A codon has three base pairs,and attached to it,it has some amino acid And then you have some other piece of tRNA Let's say it's a uracil, cytosine, adenine And attached to that, it has a different amino acid Then the amino acids attach to each other and then they form this long chain of amino acids, which is a protein and the proteins form these weird and complicated shapes So just to kind of make sure you understand so if we start with DNA and we're essentially making copies of DNA, this is replication You're replicating the DNA Now, if you're starting with DNA and you are creating mRNA from the DNA template, this is transcription You are transcribing the information from one form to another: transcription Now, when the mRNA leaves the nucleus of the cell, and I've talked-- well, let me just draw a cell just to hit the point home if this is a whole cell and we'll do the structure of a cell in the future If that's the whole cell, the nucleus is the center That's where all the DNA is sitting in there and all of the replication and the transcription occurs in here but then the mRNA leaves the cell, and then inside the ribosomes which we'll talk about more in the future you have translation occur and the proteins get formed So mRNA to protein is translation You're translating from the genetic code so to speak, to the protein code So this is translation So these are just good words to make sure you get clear and make sure you're using the right word when you're talking about the different processes Now, the other part of the vocabulary of DNA which, when I first learned it I found tremendously confusing, are the words chromosome I'll write them down here because you can already appreciate how confusing they are: chromosome chromatin and chromatid So a chromosome, we already talked about You can have DNA You can have a strand of DNA That's a double helix This strand, if I were to zoom in, is actually two different helices and, of course, they have their base pairs joined up I'll just draw some base pairs joined up like that So I want to be clear, when I draw this little green line here it's actually a double helix Now, that double helix gets wrapped around proteins that are called histones So let's say it gets wrapped like there and it gets wrapped around like that and it gets wrapped around like that and you have here these things called histones which are these proteins