Inthistutorial, we'regonnacontinuewithlasttutorialwherewe'reattemptingtopredictfuturepricemovementsof a certaincryptocurrencybasedonthesequenceinthehistoricalpricesandvolumeofthatCryptocurrencyaswellasothermajorcryptocurrencies.
Thenwe'regonnagowith a batchsizeandwe'regonnagowith 64 tostartweaken.
Tinkerwiththatlater.
Ifwewanted.
Andthenfinally, we'regonnagowith a nameon.
We'regonnamakethisan F string, andwhatyouwantis a namethatisdescriptiveofthemodelbecausegenerallyyou'regonnatinker a littlebitwiththemodel, tweakit a littlebithereandtherererunitagain, andthenyou'regonnadothesamethingagain.
Hopefully, youdon't haveitchyadvises.
I do.
Anyway, um, soyouwanttohave a uniquename, bothforthemodelthatyousaveaswellasintenseorbored.
Solateryoucancomparetheresultsof a bunchofdifferentmodelsandyoudon't havetobelike I don't knowwhatmodelthatwassoorworse, youoverwritetheothermodels.
Soanyways, uh, yeah.
Solet's comeupwith a goodname.
So I'm gonnagowithsequence, length, dashsequence, dash, futureperiod.
Uh, anyway, tensorboardandmodelcheckpoint, I thinkbeintenseorboardprobablyneedstobecapitalized.
Itdoes.
Okay.
Tenseaboard.
We'vereallyalreadyseenthiscallbackmodelcheckpointis a fancydancylittlecallbackwherebasically, youcansetvariousparametersastowhenyouwanttosavecertaincheckpoints.
Uh, there's thisis a binarychoice, soitshouldbeonlytwooptionsthereactivationbecauseit's theoutputlayerSoftmax.
Okay, nowthatwe'vegotthatwe'rereadytospecifytheoptimizerwillgo A t f gotCarastottoptimizersdotAdamwith a learningrateof 0.1 23 and a d k ofone e negativesixandthenwe'lldothemodeldotCompile, andwe'llgowithlossissparse.