Subtitles section Play video Print subtitles The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high-quality educational resources for free. To make a donation, or to view additional materials from hundreds of MIT courses, visit mitopencourseware@ocw.mit.edu. MICHAEL SHORT: So, today we're going to get into the most politically and emotionally fraught topic of this course for stuff on chemical and biological effects of radiation. Now that you know the units of dose, background dose, we're going to talk about what ionizing radiation does in the body, to cells, to other things, and we're going to get into a lot of the feelings associated with it. And by the end of this lecture, or Thursday, I'm going to teach you guys how to smell bullshit. Because we're going to go through one of millions of internet articles about things that cause cancer, that don't cause cancer. In this case, it's going to be radiation from cell phones. So I'm going to try to reserve at least 10 minutes at the end of this class for us to go through a bunch of quote, unquote, studies and misinterpretations of those conclusions. And I was going to pick my favorite of the 44 studies, and looking through them all, my favorite are all of them. AUDIENCE: [LAUGHTER] MICHAEL SHORT: So we'll see how many we can get through. But let's get into the science first, so you can understand a bit about what goes on with ionizing radiation. Like radiation damage in materials, radiation damage and biological systems is an extremely multi-time-scale process. Everything from the physical stage, or the ballistic stage, of radiation damage to biological tissues acting on femtoseconds, where this is just the physical knocking about atoms and creation of free radicals, these ionized species, which in metals you wouldn't care about, in biological organisms you do because then they undergo chemical reactions from the initial movement and creation of other strange radiolytic species and the diffusion and reaction of those things, which starts and finishes in about a microsecond, before most of these things are neutralized. And then, later on, the buildup of those oxidative byproducts of these chemical reactions undergo the biological stages of radiation damage. All of the free radicals with biological molecules have reacted within a millisecond. So radiation goes in, a millisecond later the damage is done. Then you start to affect, let's say, cell division. It takes, on average, minutes for a rapidly dividing cell to undergo a division. That's when the effects would first be manifest from a DNA mutation. But then it'd take things like weeks, or years for these sorts of things to manifest in a health-related aspect. So, the division of one cancerous cell into two won't change the way your body functions, but the doubling in size of a tumor that blocks other tissue absolutely would. And so, it all starts in this sub-femtosecond regime, when most of you-- well, for this entire year, we've been approximating humans as water. We're going to continue to do so for the purposes of these biological effects. So, let's say you, a giant sack of water, gets irradiated by a gamma ray. And that gamma ray undergoes Compton scattering. Which, now you know how to tell what the energy of the Compton electron would be. We never talked about what happens with the molecule where it came from. That molecule remains ionized. And since you're not especially electrically conductive, they're not neutralized immediately. And you can be left over with either a free radical or an electron in an excited state. And then what happens next is the whole basis of radiation damage to biological organisms. These free radicals can then encounter other ones, and let's say an H2O+, can very quickly find a neighboring water molecule, which they're almost touching and form OH and H3O. This is better known as H+, and that OH is a kind of unstable molecule. And these excited electrons here can also become these H2O+'s, leading to this cascade of what we call radiolysis reactions. There's a few of them listed here, things like an OH plus an aqueous electron, which could come from anywhere, like Compton scattering, like any other biological process that frees an electron, can make another OH-. So you can locally change the pH inside the cell that you happen to be irradiating. Or, let's say any of these oxidative byproducts could encounter DNA. Rip off or add an electron to one of the guanine, thymine, or other two or three bases in DNA or RNA, then you've changed the genetic code of the cell. In the progression of these radiologists byproducts, like I mentioned, whether you go by excitation or ionization, then you start to build up these six species-- these five species tend to be-- or these six ones tend to be the ending byproducts of a whole host of radiolysis reactions. And don't worry, you're never going to have to memorize all the radiolysis reactions because the mechanism map is fairly complicated and there are multiple routes to creating each one. But the ones that are highlighted here in these squares, are the ones that end up building up in your body, things like peroxide. Has anyone ever put peroxide on a wound before? What happens? Yell it out. AUDIENCE: It bubbles up. MICHAEL SHORT: Bubbles up. What happens when you form peroxide in your body from radiation? AUDIENCE: It bubbles up. MICHAEL SHORT: Well, luckily it doesn't quite bubble up on the macro scale level, but it is a vigorous oxidizer. 90% H2O2 is used as rocket fuel, as the oxidizing species in rocket fuel. You don't make 90% H2O2 from getting irradiated, but every molecule counts. Things like O2, you're shifting the amount of oxygen in the cells. And then there's things like these superoxide radicals, or H2O-, H2O+, or all these other things that are available to rip off or add an electron to something else that normally wouldn't have it. And the list of these potential reactions, as well as their equilibrium constants and activation energy, is huge. Here's half of it. Notice a lot of these equilibrium constants shift really strongly one way or the other. So, just because these molecules are made, doesn't mean that all of them end up staying and doing damage. But unless these rate constants are either 0 or infinity, there's going to be some dynamic equilibrium of these reactions. So, once in a while, some of these free radicals will escape the cloud of chemical change and charge and get to something else. Here's the other half of the equation set. And it's under debate just how many of these reactions there actually are. Like, how often would O2- radicals combine with water, which you can see is not quite set in the reaction, to form [? HO2 - NO2 NH+ ?] Kind of a strange little reaction right there. Actually, a lot of them are quite strange. You don't usually think of them happening because these are very transient reactions, whose byproducts do build up. And that's the chemical basis for radiation damage to biological tissues. Now, once those chemical products form, they have to move or diffuse. So you can actually calculate or get diffusion coefficients for some of these oxidizing species, as well as compute an average radius that they'll remove before undergoing a reaction. So this is part